3.592 \(\int \frac{a+c x^2}{\sqrt{f+g x}} \, dx\)

Optimal. Leaf size=61 \[ \frac{2 \sqrt{f+g x} \left (a g^2+c f^2\right )}{g^3}+\frac{2 c (f+g x)^{5/2}}{5 g^3}-\frac{4 c f (f+g x)^{3/2}}{3 g^3} \]

[Out]

(2*(c*f^2 + a*g^2)*Sqrt[f + g*x])/g^3 - (4*c*f*(f + g*x)^(3/2))/(3*g^3) + (2*c*(f + g*x)^(5/2))/(5*g^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0262261, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.059, Rules used = {697} \[ \frac{2 \sqrt{f+g x} \left (a g^2+c f^2\right )}{g^3}+\frac{2 c (f+g x)^{5/2}}{5 g^3}-\frac{4 c f (f+g x)^{3/2}}{3 g^3} \]

Antiderivative was successfully verified.

[In]

Int[(a + c*x^2)/Sqrt[f + g*x],x]

[Out]

(2*(c*f^2 + a*g^2)*Sqrt[f + g*x])/g^3 - (4*c*f*(f + g*x)^(3/2))/(3*g^3) + (2*c*(f + g*x)^(5/2))/(5*g^3)

Rule 697

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*(a + c*
x^2)^p, x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int \frac{a+c x^2}{\sqrt{f+g x}} \, dx &=\int \left (\frac{c f^2+a g^2}{g^2 \sqrt{f+g x}}-\frac{2 c f \sqrt{f+g x}}{g^2}+\frac{c (f+g x)^{3/2}}{g^2}\right ) \, dx\\ &=\frac{2 \left (c f^2+a g^2\right ) \sqrt{f+g x}}{g^3}-\frac{4 c f (f+g x)^{3/2}}{3 g^3}+\frac{2 c (f+g x)^{5/2}}{5 g^3}\\ \end{align*}

Mathematica [A]  time = 0.0269882, size = 44, normalized size = 0.72 \[ \frac{2 \sqrt{f+g x} \left (15 a g^2+c \left (8 f^2-4 f g x+3 g^2 x^2\right )\right )}{15 g^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + c*x^2)/Sqrt[f + g*x],x]

[Out]

(2*Sqrt[f + g*x]*(15*a*g^2 + c*(8*f^2 - 4*f*g*x + 3*g^2*x^2)))/(15*g^3)

________________________________________________________________________________________

Maple [A]  time = 0.045, size = 41, normalized size = 0.7 \begin{align*}{\frac{6\,c{x}^{2}{g}^{2}-8\,cfxg+30\,a{g}^{2}+16\,c{f}^{2}}{15\,{g}^{3}}\sqrt{gx+f}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)/(g*x+f)^(1/2),x)

[Out]

2/15*(g*x+f)^(1/2)*(3*c*g^2*x^2-4*c*f*g*x+15*a*g^2+8*c*f^2)/g^3

________________________________________________________________________________________

Maxima [A]  time = 0.985573, size = 72, normalized size = 1.18 \begin{align*} \frac{2 \,{\left (15 \, \sqrt{g x + f} a + \frac{{\left (3 \,{\left (g x + f\right )}^{\frac{5}{2}} - 10 \,{\left (g x + f\right )}^{\frac{3}{2}} f + 15 \, \sqrt{g x + f} f^{2}\right )} c}{g^{2}}\right )}}{15 \, g} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)/(g*x+f)^(1/2),x, algorithm="maxima")

[Out]

2/15*(15*sqrt(g*x + f)*a + (3*(g*x + f)^(5/2) - 10*(g*x + f)^(3/2)*f + 15*sqrt(g*x + f)*f^2)*c/g^2)/g

________________________________________________________________________________________

Fricas [A]  time = 1.70529, size = 96, normalized size = 1.57 \begin{align*} \frac{2 \,{\left (3 \, c g^{2} x^{2} - 4 \, c f g x + 8 \, c f^{2} + 15 \, a g^{2}\right )} \sqrt{g x + f}}{15 \, g^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)/(g*x+f)^(1/2),x, algorithm="fricas")

[Out]

2/15*(3*c*g^2*x^2 - 4*c*f*g*x + 8*c*f^2 + 15*a*g^2)*sqrt(g*x + f)/g^3

________________________________________________________________________________________

Sympy [A]  time = 6.90782, size = 150, normalized size = 2.46 \begin{align*} \begin{cases} - \frac{\frac{2 a f}{\sqrt{f + g x}} + 2 a \left (- \frac{f}{\sqrt{f + g x}} - \sqrt{f + g x}\right ) + \frac{2 c f \left (\frac{f^{2}}{\sqrt{f + g x}} + 2 f \sqrt{f + g x} - \frac{\left (f + g x\right )^{\frac{3}{2}}}{3}\right )}{g^{2}} + \frac{2 c \left (- \frac{f^{3}}{\sqrt{f + g x}} - 3 f^{2} \sqrt{f + g x} + f \left (f + g x\right )^{\frac{3}{2}} - \frac{\left (f + g x\right )^{\frac{5}{2}}}{5}\right )}{g^{2}}}{g} & \text{for}\: g \neq 0 \\\frac{a x + \frac{c x^{3}}{3}}{\sqrt{f}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)/(g*x+f)**(1/2),x)

[Out]

Piecewise((-(2*a*f/sqrt(f + g*x) + 2*a*(-f/sqrt(f + g*x) - sqrt(f + g*x)) + 2*c*f*(f**2/sqrt(f + g*x) + 2*f*sq
rt(f + g*x) - (f + g*x)**(3/2)/3)/g**2 + 2*c*(-f**3/sqrt(f + g*x) - 3*f**2*sqrt(f + g*x) + f*(f + g*x)**(3/2)
- (f + g*x)**(5/2)/5)/g**2)/g, Ne(g, 0)), ((a*x + c*x**3/3)/sqrt(f), True))

________________________________________________________________________________________

Giac [A]  time = 1.15214, size = 72, normalized size = 1.18 \begin{align*} \frac{2 \,{\left (15 \, \sqrt{g x + f} a + \frac{{\left (3 \,{\left (g x + f\right )}^{\frac{5}{2}} - 10 \,{\left (g x + f\right )}^{\frac{3}{2}} f + 15 \, \sqrt{g x + f} f^{2}\right )} c}{g^{2}}\right )}}{15 \, g} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)/(g*x+f)^(1/2),x, algorithm="giac")

[Out]

2/15*(15*sqrt(g*x + f)*a + (3*(g*x + f)^(5/2) - 10*(g*x + f)^(3/2)*f + 15*sqrt(g*x + f)*f^2)*c/g^2)/g